4 resultados para Microbiology

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of PCR in the field of molecular diagnostics has increased to the point where it is now accepted as the standard method for detecting nucleic acids from a number of sample and microbial types. However, conventional PCR was already an essential tool in the research laboratory. Real-time PCR has catalysed wider acceptance of PCR because it is more rapid, sensitive and reproducible, while the risk of carryover contamination is minimised. There is an increasing number of chemistries which are used to detect PCR products as they accumulate within a closed reaction vessel during real-time PCR. These include the non-specific DNA-binding fluorophores and the specific, fluorophore-labelled oligonucleotide probes, some of which will be discussed in detail. It is not only the technology that has changed with the introduction of real-time PCR. Accompanying changes have occurred in the traditional terminology of PCR, and these changes will be highlighted as they occur. Factors that have restricted the development of multiplex real-time PCR, as well as the role of real-time PCR in the quantitation and genotyping of the microbial causes of infectious disease, will also be discussed. Because the amplification hardware and the fluorogenic detection chemistries have evolved rapidly, this review aims to update the scientist on the current state of the art. Additionally, the advantages, limitations and general background of real-time PCR technology will be reviewed in the context of the microbiology laboratory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Medical microbiology and virology laboratories use nucleic acid tests (NAT) to detect genomic material of infectious organisms in clinical samples. Laboratories choose to perform assembled (or in-house) NAT if commercial assays are not available or if assembled NAT are more economical or accurate. One reason commercial assays are more expensive is because extensive validation is necessary before the kit is marketed, as manufacturers must accept liability for the performance of their assays, assuming their instructions are followed. On the other hand, it is a particular laboratory's responsibility to validate an assembled NAT prior to using it for testing and reporting results on human samples. There are few published guidelines for the validation of assembled NAT. One procedure that laboratories can use to establish a validation process for an assay is detailed in this document. Before validating a method, laboratories must optimise it and then document the protocol. All instruments must be calibrated and maintained throughout the testing process. The validation process involves a series of steps including: (i) testing of dilution series of positive samples to determine the limits of detection of the assay and their linearity over concentrations to be measured in quantitative NAT; (ii) establishing the day-to-day variation of the assay's performance; (iii) evaluating the sensitivity and specificity of the assay as far as practicable, along with the extent of cross-reactivity with other genomic material; and (iv) assuring the quality of assembled assays using quality control procedures that monitor the performance of reagent batches before introducing new lots of reagent for testing.